Reduction of Beta-Lactam Antimicrobial Activity in Staphylococcus aureus Abscesses by Neutrophil Alteration of Penicillin-Binding Protein 2
نویسندگان
چکیده
We previously demonstrated that brief nonkilling neutrophil exposure diminishes the binding affinity of S. aureus penicillin-binding protein (PBP) 2. We sought to investigate further the role of the neutrophil in the alteration of antimicrobial activity and its interaction with PBP-2 by studying the activity of cefotaxime, which highly binds to PBP 2, and cephalexin, which minimally binds to PBP 2. Using S. aureus, cultured in vitro in sterile-filtered normal and neutrophil depleted abscess fluid, we sought to demonstrate an in vivo significance of the neutrophil effect upon the activity of antimicrobials that target PBP-2 by studying the same antimicrobials in an experimental S. aureus abscess. Rats were implanted with perforated tissue cages and infected with S. aureus; some rats were neutrophil depleted by mechlorethamine. Abscess fluids from normal and neutropenic abscesses were harvested, pooled, sterile-filtered and stored for the time-kill studies. Treatment studies were performed by administering either 300 μg/kg/d cefotaxime or cephalexin for 7 days in other rats with 24 hour-old tissue-cage S. aureus abscesses. In time-kill studies, cefotaxime was highly active against stationary phase S. aureus in MHB and in neutropenic abscess fluid, but less active in the non-neutropenic abscess fluid (p < 0.05 compared to neutropenic abscess fluid). Cephalexin was equally active in neutropenic and nonnoneutropenic abscess fluids, and more active than cefotaxime in the abscess model after 7 days of therapy (2.1 ± 1.7 log10 kill, p = 0.029 vs. 0.81 ± 2.5, p = NS). These data suggest that neutrophil exposure, which diminishes S. aureus PBP-2 binding affinity [or total quantity], also adversely affects the antimicrobial activity of cefotaxime, which binds to PBP-2, as compared to cephalexin. Altered PBP targets from neutrophil exposure may be a mechanism of antimicrobial resistance within abscesses.
منابع مشابه
Effects of neutrophils on cefazolin activity and penicillin-binding proteins in Staphylococcus aureus abscesses.
Bacteria survive within abscesses despite antimicrobial therapy, usually necessitating drainage. Our previous work showed that bacterial killing is diminished within the neutrophils of animals with abscesses. To further assess the role of neutrophils in Staphylococcus aureus survival and the poor activities of beta-lactams in abscesses, tissue cage abscess-bearing rats were given polymorphonucl...
متن کاملPenicillin-binding protein inactivation by human neutrophil myeloperoxidase.
Myeloperoxidase (MPO), H2O2, and chloride comprise a potent antimicrobial system believed to contribute to the antimicrobial functions of neutrophils and monocytes. The mechanisms of microbicidal action are complex and not fully defined. This report describes the MPO-mediated inactivation, in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, of a class of cytoplasmic membrane...
متن کاملPenicillin-binding protein 4 overproduction increases beta-lactam resistance in Staphylococcus aureus.
The Staphylococcus aureus mutant strain PVI selected in vitro for methicillin resistance overexpressed penicillin-binding protein (PBP) 4. In the wild-type parent strain the pbp4 gene was separated by 419 nucleotides from a divergently transcribed abcA locus coding for an ATP-binding cassette transporter. The mutant PVI was shown to have a deletion in the pbp4-abcA promoter region that affected...
متن کاملβ-Lactam antibiotics targeting PBP1 selectively enhance daptomycin activity against methicillin-resistant Staphylococcus aureus.
The activity of daptomycin (DAP) against methicillin-resistant Staphylococcus aureus (MRSA) is enhanced in the presence of subinhibitory concentrations of antistaphylococcal β-lactam antibiotics by an undefined mechanism. Given the variability in the penicillin-binding protein (PBP)-binding profiles of different β-lactam antibiotics, the purpose of this study was to examine the relative enhance...
متن کاملCeftobiprole is superior to vancomycin, daptomycin, and linezolid for treatment of experimental endocarditis in rabbits caused by methicillin-resistant Staphylococcus aureus.
Beta lactam agents are the most active drugs for the treatment of streptococci and methicillin-susceptible Staphylococcus aureus endocarditis. However, methicillin-resistant S. aureus (MRSA) is resistant to all beta lactam agents licensed to date, and alternative treatments are limited. Ceftobiprole is a novel broad-spectrum cephalosporin that binds with high affinity to PBP 2a, the penicillin ...
متن کامل